近些年随着非线性科学中孤子理论的飞速发展,非线性发展方程的解析和可积性研究成为当前数学研究的热点课题。但是,通过反散射方法研究非线性发展方程的解析和可积性问题越来越困难,双线性方法和计算机符号计算是解决该问题的有效手段。本项目以非均匀的海森堡铁磁旋转系统中高阶非线性薛定谔模型为研究对象,通过在双线性方法的基础上引入辅助函数,并利用计算机符号计算,系统地研究了该模型的单孤子、双孤子和N孤子的解析解,从解析角度分析孤子的传播和相互作用的本质和规律,并从可积性角度分析得到该模型的无穷守恒律。本项目的研究方法和成果揭示了一类重要的非线性发展方程的解析解和可积性质,提供了研究其他空间变系数非线性发展方程解析解和可积性的途径,丰富了非线性发展方程的解析研究理论。
英文主题词nonlinear physical models;soliton solutions;integrable property;conservation laws;rogue wave solutions