本课题以复杂场景下行人目标跟踪问题为背景,以粒子滤波的重叠分布特性为切入点,针对粒子滤波中特征计算及状态估计两个核心环节,探索实时性和鲁棒性相结合的行人跟踪方法。针对计算复杂度过高这一目前限制粒子滤波算法实时应用的瓶颈,拟基于粒子滤波过程中粒子的重叠分布特性及特征可加性原理,研究多尺度自适应分区域的粒子特征值的计算方法,预期可大大简化重叠粒子的特征提取;在粒子状态的鲁棒估计方面,基于新兴的压缩感知理论,从时变稀疏字典的建立机理入手,通过分析遮挡、形变等干扰因素对行人目标特征的影响,提出一种行人目标描述字典的实时生成方法。在此基础上,对建立的动态字典进行基于压缩感知理论的l1范数求解,以稀疏度作为粒子加权值,将有效实现目标大小变化及存在遮挡时的鲁棒跟踪。本课题对粒子滤波过程中重叠粒子分布机理、有限可加特征的选取原则、应用方法以及在线稀疏字典的高效自动生成方法等关键问题展开研究。
英文主题词Particle Filter;Compressed Sensing;Pedestrian Tracking;Robust;Sparse Dictionary