本项目以近似对称群理论和扰动理论为基础,研究非线性扰动系统的近似广义分离变量及其性质。 首先,研究(1+1)维非线性混合型扰动方程的近似广义分离变量问题,给出该类型非线性扰动方程的近似广义分离变量解的定义,并寻求该类型扰动方程容许近似广义条件对称的充要条件. 构建所得分类方程的近似广义分离变量解.探讨分类非线性扰动方程的近似守恒律、近似对称、近似李代数结构和近似伴随表示。 其次,带有扰动的非线性波动型方程的近似导数相关的广义分离变量问题,构造所得分类方程的近似导数相关的广义分离变量解;研究近似导数相关的广义分离变量解的性质. 同时,研究分类中所致非线性扰动方程的近似守恒律、近似对称、近似李代数结构和近似伴随表示等。
英文主题词exact solution;evolution equation;group classification;symmetry constraint;inverse scattering method