当前不适定问题研究的核心和主流是恢复解对数据的连续依赖性,其理论基础是正则化。然而每一种正则化方法在处理具体问题中总有它的优点和不足,很难找到一种万能的方法去解决所有的问题。本项目对分数阶扩散方程反向问题进行研究,给出最优性分析结果、最优正则化方法和迭代型正则化方法,结合基于误差界的偏差原理、平衡性法则、单调差法则等后验参数选取法则,给出不同的构造策略和证明方法,建立完善的理论估计和提供稳定高效的数值算法。项目的重点是提出构造的迭代型正则化方法,给出先验和后验的误差估计,特别是在高维数、变系数上的有所突破。
英文主题词Ill-posed problem;Regularization;Parameter choice rule;Error estimate;Numerical explement