上世纪下半叶以混沌现象被揭示为代表的自然科学大革命,带领各个学科领域掀起了向非线性方向推进的热潮,本项研究将从多个层面研究非线性结构的动力学行为,是非线性动力学在固体力学领域的引伸和扩展。拟以固体结构基本元件为研究对象,计及固体材料物理非线性或有限变形、几何非线性与粘性或横向惯性等效应的耦合,建立分析模型,研究固体结构中冲击波、孤立波等生成条件及传播规律;以冲击加载的动力实验为基础,研究弹塑性杆或
本项研究是经典固体力学与现代非线性力学相结合的新的研究领域,涉及到多学科的交叉,且有着广阔的应用背景。以固体结构的基本元件为对象,对非线性固体结构中波的传播、动态分岔、动力响应及其功能失效等重要问题开展了富有成效地研究。考虑固体中常出现的非线性源和耗散效应或弥散效应,从多个层面开展了固体结构中非线性波的研究,建立了杆波导中几类重要的非线性波的演化方程,并发展了多种方法进行求解,给出了它们的精确周期解,在极限条件下得到了它们的孤波解和冲击波解及其相应的生成条件。完成了细杆和柱壳的冲击屈曲实验研究,借助一维应力波理论分析了动力分岔及其后屈曲特性,结果表明,动力屈曲载荷成倍地高于静力分岔载荷,这一结果澄清了已有研究存在的分歧。针对一类强非线性系统动力响应,提出了两项谐波法,具有计算简单、精度高等优点。此外,结合工程应用尚对其它的动力失效问题开展了某些重要的研究工作。