近年来,复杂环境下的人脸识别受到了广泛的研究和关注。如何提取有效的人脸特征是人脸识别的关键问题之一。本项目的研究目标是针对复杂环境下的人脸识别,在距离度量学习和类依赖特征分析级联结构框架的基础上研究有效的鉴别特征提取方法。从大规模数据半正定度量学习、增量学习、相关滤波器和相关滤波器组的设计等方面分别进行深入研究,建立起一套有效的人脸鉴别特征提取方法,从而在一定程度上克服由光照、姿态、表情和年龄等各种内外因素所造成的人脸识别困难。本项目组具有良好的人脸识别研究工作基础。对本项目的研究将进一步推动人脸识别技术的发展。
英文主题词face recognition;discriminant feature extraction;distance metric learning;class-dependence feature analysis;