书法作品鉴别是书法传承和保护中的重要环节。 然而,传统鉴别只局限于有限专家的个人经验,缺乏客观量化的实证,难以应对时下大批量作品辨真识伪的迫切需求。本课题以数字图像形式的书法作品为对象,展开基于视觉感知和迁移学习的书法鉴别技术研究,具体内容包括(1)研究书法风格知识和书家个性知识,建立领域知识库;(2)研究书法作品图像的预处理技术;(3)遵循人眼视觉感知机理,基于统计学方法,用隐马尔科夫模型建立可计算的书法风格模型,用稀疏编码算法建立可计算的书家个性模型;(4)阐明书法鉴别的内部机理,建立书法鉴别的阶段模型书法风格鉴别和书家个性鉴别;(5)采用迁移学习方法,研究基于小样本或稀缺样本的名家书法鉴别问题。本课题以建立通用的书法鉴别模型入手,梳理书法鉴别的层次结构和关系,研究具体实现技术,旨在为大规模书法鉴别的发展提供新思路和技术实践支持。
英文主题词visual perception;artistic information;Chinses calligraphy authentication; sparse coding;