如何早期发现肿瘤、术前做出准确而全面的诊断从而使胰腺肿瘤能够早期治疗、合理治疗是临床工作与研究的关键问题。增殖细胞核抗原Ki-67是胰腺肿瘤发生、发展过程中的一个重要因子。能谱成像是CT领域的最新技术革新,最近的研究表明CT能谱成像有望提高病灶检测和诊断的敏感度和准确度,但其所获得的高维数据信息给常规诊断模式和思路提出了前所未有的挑战。机器学习与模式识别技术是处理和分析高维数据信息的有效方法,广泛应用于医学信息学领域。本研究试图对CT能谱信息进行特征选择、并通过模式识别和机器学习构建针对胰腺肿瘤的鉴别诊断模型;通过特征选择明确与Ki-67相关的CT能谱特征。研究内容主要包括胰腺癌和胰岛素瘤的早期检测、胰腺肿瘤的鉴别诊断及胰腺癌的术前分期,以期达到提高胰腺肿瘤诊断的敏感度和准确度,实现早期诊断、准确诊断的目的,为早期、合理治疗及预后评估提供全面可靠的信息;也为今后其它病变的研究提供方法学基础
英文主题词CT spectral imaging;feature selection;support vector machine;diagnosis;pancreatic neoplasms