传统单区域辐射流体力学Lagrange数值方法在应用到多区域辐射流场和滑移线时,会遇到由于非匹配网格引起的各种格式精度下降的问题。而流场动量方程和辐射能量方程计算精度的下降,两者强非线性耦合相互作用,又导致网格更大的非物理变形。典型的界面附近网格畸变可直接导致计算失败。本项目在理论方面研究二维辐射流体力学分区和滑移Lagrange数值方法,并将这些理论成果应用到极高温条件下惯性约束聚变(ICF)研究中。本项目研究在理论和应用两方面主要取得了如下成果1. 构造了Lagrange非匹配网格上非线性扩散方程差分格式;2. 构造了Lagrange非匹配网格上动量方程差分格式;3. 针对极高温条件下(如ICF问题)提出了电子压、离子压、光子压扰动隅角力概念并构造了具有抑制网格非物理畸变能力的新的计算格式;4. 构造了隅角力的人为粘性隅角力边粘性和隅角力张量粘性;5. 在应用于惯性约束聚变(ICF)研究的单区程序LARED-I基础上,本项目研制了具有分区和滑移功能的辐射流体力学模拟程序。这一程序采用了灵活的数据结构,对计算区域能够进行任意分区和设置滑移线,扩展了原有LARED-I程序的应用范围
英文主题词nonconforming grid;radiation and hydrodynamics;difference scheme; LARED-I