偶应力/应变梯度理论是成功解释尺度效应的连续介质理论,其相应的数值方法是微纳结构研究的必要基础。偶应力/应变梯度理论的势能泛涵同时包含位移的一、二阶导数,建立协调有限单元需满足位移插值函数C1连续。然而,C1协调单元的节点参数含有位移的高阶导数,构造和应用都较为困难。对于目前广泛采用的C0单元,需要通过Lagrange乘子或罚函数来约束独立插值的位移和位移梯度,由此带来额外的计算量和计算结果的不确定性。相对于协调单元,不协调单元放松了单元间的连续条件,可以构造更为灵活的单元函数,便于建立高精度单元。本项目将研究偶应力/应变梯度理论不协调元的收敛准则,提出一类放松单元间连续性要求的变分原理,建立同时满足C0连续(或弱连续)、二次完备和C1弱连续的精化不协调单元。通过对偶应力/应变梯度理论精化不协调元方法的系统研究可以加速推进该理论的研究和工程应用,促进微纳技术的发展。
英文主题词Couple stress/Strain gradient theory;Finite element;variational principle;weak continuity;Patch test