分数阶微分方程边值问题是经典微分方程边值问题自然的数学推广,具有深刻的物理背景和丰富的理论内涵,在物理、生物、化学等多个学科领域具有广泛的应用。本项目基于非线性泛函分析的理论基础,以分数阶积微分方程多点边值问题为研究对象,在所构造的满足多点边值条件的再生核空间中,利用此空间良好的性质,给出此类分数阶模型的 Fourier 级数逼近算法,并且通过理论分析证明了算法的收敛性和稳定性,同时给出了详尽的误差估计以及算法的时间复杂性分析。 本项目的研究能够促进分数阶模型多点边值问题处理技术的发展,为解决力学、生物学和工程技术中的一些实际问题提供有力的支持。
英文主题词fractional differential equations;multi-point boundary value problems;numerical algorithms;convergence analysis;reproducing kernel algorithms