非牛顿引力实验检验、引力波探测、高精度空间惯性传感器和弱力检测等都需要深入研究检验物体的扰动力来源。对于近距离高精度实验和空间引力实验研究而言,检验质量表面电势分布的影响是其主要限制之一,必须深入研究。表面电势分布称之为Patch效应,它是美国引力探针B卫星项目最终结果主要限制之一,也是空间引力波探测LISA和下一代地面引力波探测器的主要误差来源之一。因此,Patch效应研究具有重要科学意义和应用背景!项目组在已发展成熟的精密静电控制扭摆弱力传感研究基础上,利用电容位移传感和静电控制扭摆作为弱力探测器,利用源导体扫描方案精确测量检验质量表面电势的空间分布,预期测量空间分辨率达到0.1mm量级,测量精度达到10微伏/Hz^1/2,通过不同环境参量条件和不同材料的实验研究归纳和总结出Patch效应的物理机制以及对其抑制的解决方案,为高精度空间惯性传感器研制和引力实验研究提供提导!
Surface potential;Torsion balance;Capacitive sensor;Distribution of potential;Gravitational experiment
高精度的引力实验中主要开展物体之间的相互作用和相互规律的检验,实验中要求检验质量表面电势的涨落引入的扰动力必须小于实验的探测精度。因此研究和测量导体表面电势对于高精度的引力实验而言具有重要的意义。在本项目的资助下,我们开展了对导体表面电势测量的研究,取得了主要进展有(1)完成了基于扭摆的测量导体表面电势的实验方案设计和误差分析;(2)完成了导体表面电势测量的整个实验系统,自由摆热噪声、电容位移传感和静电控制各环节指标满足预期要求,整个系统探测力矩达到7×10-14Nm/Hz1/2;(3)完成了静态测量,检验质量电荷分布测量精度已经达到15×10-6V/Hz1/2。我们将在此平台上进一步深入开展检验质量电荷分布及其影响研究。