空间环境下浮力对流极大减弱,Pearson 不稳定性代替Benard 不稳定性成为激发水平液层中流体对流的机制。一般的Pearson 不稳定性考虑在平板与平自由面之间的液层在平板加热产生温度差时形成的对流。在空间环境中表面张力与重力相比重要性增强.流体的自由面倾向于变得弯曲,在温度场的作用下,流体的自由面上会有切向温度梯度驱动的热毛细对流。本项目研究了空间环境中具有弯曲自由面底部加热液层中流体的对流机制。这时Pearson 不稳定性产生的Marangoni对流与热毛细对流相耦合。这是一种尚未有人研究的新体系。我们采用了数值计算的方法研究这两种对流耦合的基本规律,确定热毛细对流作用下发生Marangoni对流的临界条件,讨论了液层的体积比、尺度比和Prandtl数等体系参数的影响。本研究为理解空间流体物理的对流和分岔现象提供理论基础,并为地面上的小尺度流体问题提供重要的参考。
英文主题词thermocapillary convection;Marangoni convection;flow instability; space environmnet;numerical simulation