半参数模型的估计问题虽然已经得到广泛的研究和应用,但是关于其稳健估计方法的研究相对较少。近年来新提出的复合分位数回归可以兼顾效率和稳健性。但是,现有的复合分位数方法需要一个基本的假设随机误差的分布是对称的。没有这个前提条件,将出现一系列本质性问题,如估计是有偏的、不相合的。同时,现有的复合分位数回归采用最简单的等权重复合方式,没有考虑使用最优权重。针对这些问题,本项目致力于研究一般误差分布下若干半参数模型的复合分位数方法;特别地,我们将对单指标模型展开研究。主要研究内容为一是利用复合分位数的思想给出参数部分的估计;二是摆脱误差分布对称的假设,针对非参数部分建立相合的复合分位数估计类;三是从相合估计类中确定最优的非参数估计,证明最优权重的存在唯一性并讨论其实际计算方法。由于实际中误差分布的对称性通常无法预知,因此本研究理论上有所创新,方法具有实际应用价值。
英文主题词Robust method;composite quantile regression;missing data;empirical likelihood;conditional feature screening