同伦方法是一种重要的全局收敛性方法,其主要好处是能够在较弱的解存在性条件下得到大范围收敛性。本项目旨在运用光滑化同伦方法来解决一些特殊约束的数学规划问题。主要内容包括(1)利用光滑化同伦方法,通过构造合适的同伦方程,来解决二阶锥的优化问题、半无限规划问题等,使得能够在较弱的解存在性条件下, 证明同伦路径的存在性和收敛性。这种方法与传统的组合同伦方法相比,由于不需要引进乘子变量,故将有更高的计算效率;(2)对于(1)中给出的同伦方法,结合同伦方程的特点,给出一个新的更有效的预估校正算法, 使之具有全局收敛性及多项式复杂性;(3)在其全局收敛性保证的条件下,利用预估校正方法,设计一个具有高阶局部收敛性的路径跟踪算法。通过以上内容的研究,本项目将为解决约束优化问题提供有效的新方法。
英文主题词constrained optimization;homotopy method;smoothing method;global convergence;