近20年来,静息态功能磁共振技术(R-fMRI)逐显成熟并成为探索人脑功能和神经精神疾病的有力工具。R-fMRI能测量活体大脑内在功能活动。基于R-fMRI信号,可以计算各种指标来刻画人脑内在功能特性。在此过程中,原始数据必须经过一些预处理,高斯空间平滑是其中最常见和重要的一步,用来增强信噪比、降低环效应、改善组分析误差和满足高斯随机场需求。随着快速磁共振成像技术发展,高斯平滑的局限凸显加剧部分容积效应、降低空间分辨率、损害功能定位精度和限制结构功能关联。本项目采用偏微分方程理论中非局部扩散方程克服上述缺陷,研究非局部空间平滑对R-fMRI图像处理的影响。在个体和群组水平上,比较非局部平滑与高斯平滑在R-fMRI计算中的不同。本研究将为R-fMRI图像处理提供新方法,改进目前的R-fMRI图像处理流程,为高时空分辨率的R-fMRI计算提供新思路,推动其在神经和精神疾病研究中的应用。
英文主题词resting-state fMRI;connectome;brain network;spatial smoothing;non-local smoothing