基于聚电解质荷电性可调的基本特性和已取得的初步实验事实,从高分子膜结构的层次设计理念出发,通过调控聚电解质链间静电相互作用强弱,制备高分子纳米粒子(Polymeric nanoparticles,PNPs),替代传统高分子链,构筑以PNPs为基本单元的、同时具有高选择性和高渗透性的渗透汽化(Pervaporation,PV)膜。项目重点设计并合成苯乙烯磺酸钠-丙烯酸共聚物、磺化羧甲基纤维素钠、部分季铵化聚4-乙烯基吡啶等聚电解质,制备三类不同电荷作用的PNPs及其PV膜,用于有机物脱水。采用正电子湮灭技术等方法表征PV膜结构与形貌,并与其PV性能进行关联,找出PNPs膜高PV性能的主要因素,阐明高渗透性机制。在此基础上,采用化学交联方法固定PNPs膜结构,提高其分离性能的稳定性。本项目的研究不仅开辟了一类新的PV膜材料,而且为高性能膜材料的设计提供了一种新的理念,具有重要的科学和实际意义。
Polyelectrolyte complexes nanoparticles (PECNPs);pervaporation membrane;strong ion-pairs;positron annihilation;high permeability
本项目基于聚电解质电荷数量的可调控性,通过调控荷电基团种类、化学结构和络合程度,制备了多种具有层次结构、同时含有络合和未络合磺酸基团的聚电解质络合物纳米粒子(PECNPs)。 深入研究了磺酸基团的状态对其水合能力的影响,分析了未络合磺酸基团和络合磺酸基团的水合能力的差异。在此基础上,以PECNPs粒子为铸膜基元,获得了系列高渗透和高选择性的渗透汽化膜,优化条件下对于乙醇/水体系具有良好的分离性能 其通量达到2100 g/m2 h, 透过液水含量达99.58 wt%。在络合过程中引入碳纳米管和氧化石墨烯,获得的聚电解质络合物纳米杂化膜,在保持稳定选择性和渗透性的同时,膜的力学强度提高了2倍。采用正电子湮灭技术和扫描电镜等分析方法表征膜微观结构、自由体积和纳米级孔洞,发现了荷电基团水合能力和自由体积是控制膜性能的关键因素,阐明了其高性能分离机制。本项目的研究开辟了聚电解质纳米粒子渗透汽化膜新材料,为高性能膜材料的设计提供了一种新的理念,具有重要的科学意义和应用价值。