分类器设计是影响特征级信息融合性能的重要因素,传统方法大多将多源数据简单处理后仍视作单一源数据进行分类,未能充分利用多源数据的类别信息。四元数体是实数域和复数域的自然扩充,经典分类器在四元数体上的推广可得到直接处理最多四路输入的分类器。本项目针对四元数体上非线性可分问题展开研究,首先依据四元数体上多源信息融合模型,提出多源信息归一化和距离度量方案;进而针对四元数不满足乘法交换律的特性,研究四元数体上的四元数矩阵正交特征向量系求解的高效算法,并构造四元数体上的核函数;在此基础上,推导四元数核散度矩阵,提出四元数体上的核分类算法;最后,通过多模态生物特征的融合问题进一步完善四元数体上核分类器的应用细节,验证四元数核分类器的性能。目前,基于四元数的分类器研究尚处于起步阶段,而四元数体上非线性核分类器更有待深入探讨。本项目的研究成果将推进核方法的研究,为信息融合技术提供新型的数据处理和分类手段。
英文主题词Multi-feature fusion;Feature matching;Multimodal biometric recognition;Kernel-based classifier;Quaternion