在数据高度缺失、甚至数据受异常噪声污染的苛刻条件下,快速从高维数据中辨识出低秩子空间并进行子空间跟踪,是本项目的主要研究内容。本项目将研究格拉斯曼流形的随机梯度下降最优化理论,研究在数据缺失情况下1-范数最优化模型的增广拉格朗日形式,通过选择合适的子空间辨识问题代价损失函数,由此进行随机梯度下降算法的推导及收敛性证明。本项目将从视频监控中实时背景/前景分离,人脸序列图像的在线对准两方面,研究鲁棒性子空间在线辨识与跟踪在计算机视觉问题中的应用,并开发出示范系统验证算法的有效性与实时性。
英文主题词subspace tracking;online learning;robust optimization algorithms;computer vision;visual tracking