本项目主要针对海量、高维、类别标记不完全、类别样本非对称等高复杂性异构数据,系统研究其特征提取和分类的新方法。首先,在建立有效的数据聚类的基础上,提出一种新的基于流形学习的特征提取方法;然后根据数据的特点,构建相应的分类器模型和学习方法针对高维小样本数据,提出一种基于组合核函数的多类SVM模型;针对大样本集、类别样本非对称数据,拟提出一种实时反馈自学习模块神经网络计算模型;针对有标记和无标记混合数据,构造一种基于能量函数的约束流形半监督学习算法;最后集成分类结果做出判决。本项目所开展的是广泛存在于国民经济和现实生活中的高复杂异构数据特征提取与分类问题的研究。这项研究所取得的些许进步必将为机器学习理论在现实生活的广泛应用打下一定的基础,并为人类探索这些数据中的规律和奥秘提供有力的工具。