在多复变与复几何领域中, L2估计占有重要地位。在本项目中,我们将主要研究多复变与复几何中的L2延拓问题和L2除法问题。在L2延拓问题上,我们将研究弱拟凸流形内的超曲面上的dbar闭的L2的光滑的向量丛值(0,q)形式的L2延拓性质。当q=0时,著名的Ohsawa-Takegoshi L2延拓定理以及后续工作给出了这个问题的满意回答。当q≧1时,这个问题至今还未在文献中完全解决,但是我们已有部分进展。在本项目中,我们将继续研究q≧1时的情况。 L2除法问题主要关心的是,弱拟凸流形上满足一定的L2积分条件的向量丛值的全纯截面是否具有某种L2除法性质。在这个问题中,L2积分条件以及最后的估计式是关键所在。在本项目中,我们将重点改进其中的L2积分条件和最后估计式中的一致常数,这也和其中包含的公开问题有关。
英文主题词L2 estimates;L2 extension problems;holomorphic functions;plurisubharmonic functions;optimal estimates