个性化学术资源推荐系统是学生和科研人员在学习和工作中迫切需要的工具。已有的数字图书馆系统、个性化推荐系统等都没有针对学术资源和学术用户的特点展开深入的研究。为此,本项目首先要转变只从用户感兴趣的内容中提取用户兴趣的传统思路,提出将内容个性化与行为个性化相结合的用户兴趣模型。为了跟踪用户在内容兴趣方面的变化,提出动态发现用户兴趣的思路,主动地收集用户显式的、隐式的反馈,通过数据挖掘、信息检索等技术,挖掘用户最新的兴趣并适时更新用户兴趣模型。为了对行为偏好不同的用户提供个性化的推荐,提出基于用户历史行为的效用模型,并通过对模型的训练,获得效用函数,进而实现基于效用的个性化推荐。面对海量的学术资源和用户,为了解决系统的可扩展性问题和性能问题,将研究分布式的并行推荐方法。系统原型将在两个有代表性的实际应用中得到检验。本项目的研究将有利于学生和科研人员提高科研水平,丰富推荐系统的理论和技术。
英文主题词recommendation system;data mining;parallel computing;optimization;utility