如何确保信息传递的精确度(保真度),是生物体系信息传递(如DNA复制)的核心问题。理论和实验都表明,负责信息传递的分子机器能够使用非平衡化学反应所提供的自由能,对信息传递过程中出现的"差错"进行校验。自上世纪70年代起,关于校验机制的研究一直是生物物理学的重点,其中Hopfield-Ninio动力学校验模型是最为成功的理论。然而,该学说及后继工作仅强调了校验的动力学特征,未能探讨其能量学(非平衡热力学),而后者对于理解分子机器的工作原理同样重要。本项目围绕"能量"如何转化为"信息"这一主线,将着重研究一些典型信息传递过程的"保真度"与输入能之间的关系,探寻能量转化为信息的"效率"的恰当定义。项目还将重点研究DNA复制过程,其中DNA聚合酶不仅是信息处理机器,而且还是可对外做功的分子马达。我们将构建分子马达模型,重点研究该过程的保真度如何随外力改变,以及输入能如何在机械功与信息生成之间分配。
copolymerization;depropagation;any-order terminal effect;fidelity;multi-motor systems
共聚合化学反应无论是在基础研究中还是工业应用中都非常重要,其核心科学问题是研究共聚反应的动力学以及生成的共聚物分子链的统计特性。对于一般的简单共聚反应,当必须同时考虑单体的聚合和解聚时,目前尚无系统的理论研究。在本项目中,我们在随机化学动力学的框架内,对含任意阶末端效应、任意多种单体参与的共聚过程,提出了一个普适的定态动力学及热力学理论。进一步,我们将该理论拓展到了DNA生物合成(由DNA聚合酶催化)等更复杂的共聚过程,建立了相应的定态动力学方程,并对DNA复制过程的保真度问题进行了系统的研究,初步揭示了DNA分子结构、DNA聚合酶结构与DNA复制保真度之间的关系。此外,同样基于化学动力学框架,我们还研究了其它步进式分子马达的多马达系统动力学问题。对于多驱动马达协同拉伸膜管的问题,我们的研究表明在适当考虑驱动马达分子本身的弹性以及体积排斥效应时,单列马达就可从细胞膜上拉出一根膜管,而之前的理论预测需要多列马达才能达到这一目的。对于多肌球蛋白协同输运微丝的问题,我们将经典的桥接动力冲程模型(本质上是平均场理论)推广到有限马达数目的情形(少体理论),并预言了微丝输运存在着双稳态现象,这是经典理论所无法预言的。