人脸识别是生物特征识别技术的一种,且具有特定的优势。在人脸识别过程中,不同的人脸特征对人脸识别的贡献存在较大的差异,往往是几个关键性的特征在引导着人脸之间的差别,而多特征融合的人脸识别也是目前发展的趋势之一。因此,人脸特征显著性的评价机制以及多特征的融合方法成为本课题研究的重点。课题组在研究了人类视觉在实际识别目标过程中表现出的序贯性和层次性,将由于多种随机变化引起的特征可靠建模和识别问题转化为目标特征提取、选择和融合识别问题。提出基于显著性的人脸特征提取和特征选择方法,以概率统计为准则来组织和表达人脸的特征,建立人脸特征的显著性层次模型。对于优选出的显著性特征,采用基于最小错误概率的改进DS证据理论决策级融合方式,融合过程中不断更新人脸的置信度函数,充分体现了"越显著的人脸特征对于人脸识别的贡献越大"这个事实。该课题的研究成果,有望对其他类目标识别技术提供一定的参考和借鉴。
英文主题词Feature Extraction;Salience;Feature Selection;Features Fusion;Face Recognition