情感占据了人类精神世界的核心地位,对情感的直接表现形式-人脸的分析与研究不仅有助于理解情感,而且将极大地促进人工智能、人机交互等学科的发展。目前研究人员从表情的几何结构和统计特性两个角度对表情识别进行了研究,提出了很多经典算法,但是算法的易实现性和模型可解释性之间的矛盾一直没有得到有效地解决。本项目从人脸特征提取开始,一直到Bayesian网络模型构建,研究了一整套高效,高精度的人脸分析方法和模型,具体而言,提出了基于Gabor小波与局部二元模式的人脸特征的提取算法,提出了基于多维主分量、联合核主分量与共同向量的人脸统计模型。另外,还研究了基于稀疏数据的LLE改进模型,取得一系列成果。研究Bayes统计理论和图的直观表达来研究表情的统计特性和特征间的逻辑关系,对贝叶斯网络结构进行理论分析,针对经典算法不足以完全开发贝叶斯网络的图形特性导致结构学习的低效和较低精确性,研究了基于马尔科夫集的贝叶斯图形增强结构学习算法,已取得长足进展。基于贝叶斯网络的表情识别研究,对于分析表情、提高表情识别率、理解情感具有重要的理论意义和实用价值。
英文主题词face recognition, bayesian network, principal component analysis,local linear embedding, Local binary pattern