位置:成果数据库 > 期刊 > 期刊详情页
基于似零范数和混合优化的压缩感知信号快速重构算法
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]厦门大学水声通信与海洋信息技术教育部重点实验室,厦门361005
  • 相关基金:国家自然科学基金(11274259); 教育部高等学校博士点专项基金(20120121110030)资助
中文摘要:

欠定系统(又称超完备系统)的稀疏信号恢复在压缩感知、源信号分离和信号采集等领域中被广泛研究.目前这类问题主要采用l1范数约束结合线性规划优化或贪婪算法进行求解,但这些方法存在收敛速度慢、恢复精度不高等缺陷.提出一种快速恢复稀疏信号的算法,该算法采用一种新的近似l0范数代替l1范数构造代价函数,并融合牛顿法和最陡梯度法推导出寻优迭代式,以获得似零范数代价函数的最优解.仿真实验和真实数据实验结果表明,与经典算法相比,该算法在能提供相同精度、甚至更好精度的条件下,收敛速度更快.

英文摘要:

Obtaining sparse solutions of under-determined, or over-complete, linear systems of equations has found extensive applications in signal processing of compressive sensing, source separation and signal acquisition. However, the previous approaches to this problem, which generally minimize the 11 norm using linear programming (LP) techniques or greedy methods, are subject to drawbacks such as low accuracy and slow convergence. This paper proposes to replace the 11 norm with a newly defined approximate 10 norm (AL0), the optimization of which leads to the derivation of a hybrid approach by incorporating the steepest descent method with the Newton iteration. Numerical simulations and real data experiment show that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550