位置:成果数据库 > 期刊 > 期刊详情页
遥感影像分类中的空间尺度选择方法研究
  • 期刊名称:遥感学报
  • 时间:0
  • 页码:513-518
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京师范大学地理学与遥感学院,遥感科学国家重点实验室,北京100875, [2]西安测绘研究所,陕西西安710054, [3]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079, [4]南京大学地理信息科学系,江苏南京210093
  • 相关基金:国家自然科学基金(编号:40901199); 国家自然科学基金(编号:40871161); 国家973项目(编号:2007CB714402); 国家973项目(编号:2006CB701300); 国土资源部百名优秀青年科技人才计划资助项目; 遥感科学国家重点实验室开放基金资助 致谢本文中的高分辨率影像分类实验得到了中国测绘科学研究院顾海燕女士的帮助,在此表示最诚挚的感谢.
  • 相关项目:空间尺度对遥感影像分类的影响研究
中文摘要:

提出了一种新的基于信息熵的空间尺度选择方法。该方法充分利用了遥感影像的多光谱信息。在这个方法中,信息熵被用于评价影像类别可分性的定量标准;另外影像的空间分布特征也被考虑。该方法与已有方法,即基于局部方差的方法、基于变异函数(Variogram)的方法、基于离散度的方法,进行了比较。TM和Quick Bird两种影像被引入到评价中来。实验结果表明,本方法能够准确地确定两种实验影像的最优分类精度所对应的空间尺度。QuickBird影像采用了面向对象的分类方法进行实验,这表明本方法不仅适合于传统的分类方法,同时也适用于面向对象的方法。通过比较分析表明,本文方法明确优于已有各种方法。

英文摘要:

The effect of scale is continuously attracting attentions in geomatics,bionomics and environmentology.Many methods have been developed for the selection of optimal scale,including those based on local variance,variogram and transformed divergence.However,there are some problems associated with these methods,which limit their applications in practice.This paper presents a new method for optimal scale selection,based on information entropy.The novelty of this new method is that the multi-spectral information is fully used to define the optimal scale.In this method,(a) information entropy is introduced to quantify the uncertainty in image classification;(b) the spatial distribution is also taken into account.This new method has been evaluated and also compared with the existing methods,i.e.,those based on local variance,variogram and transformed divergence.Two types of image are used,i.e.TM(Thematic Mapper) which has relatively low resolution and Quickbird image which has high resolution.The experimental results show that the proposed algorithm is capable of effectively determining the optimal scale for these images.In the case of classification of Quickbird image,objected-oriented classification technology is used and the results prove that the new method not only works well with traditional classifiers but also performs with object-oriented classifiers for high resolution images.A comparative analysis shows that the new method performs much better than existing methods.

同期刊论文项目
期刊论文 3 会议论文 4 著作 1
同项目期刊论文