图的无符号拉普拉斯矩阵是图的邻接矩阵和度对角矩阵的和,其特征值记为q1≥q2≥…≥qn.设C(n,m)是由n个顶点m条边的连通图构成的集合,这里1≤n-1≤m≤(n).如果对于任意的G∈C(n,m)都有q1(G^*)≥q1(G)成立,图G^*∈C(n,m)叫做最大图.这篇文章证明了对任意给定的正整数a=m-n+1如果 n〉-1/2+a+1/2√1+12a+12a^2那么n〈q1(G^*)〈n+1,进而得到,对任意的G∈C(n,m),只要n 〉-1/2+a+1/2√1+12a+12a^2,就有q1(G)〈n+1.
The signless Laplacian matrix of a graph is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are denoted by q1 ≥ q2 ≥ …… ≥/qn. Let C(n, m) be a set of connected graphs in which every graph has n vertices and m edges, where 1≤ n - 1 ≤rn ≤ (2^n). A graph G^* ∈ C(n, m) is called maximum if q1(G^*) ≥ q1(G) for any G ∈ C(n, m). In this paper, we proved that for any given positive integer a=m-n+1,n〈q1(G^*)〈n+1 if n〉-1/2+a+1/2√1+12a+12a^2,which leads to ql (G) 〈 n + 1 for any G ∈ g(n, m) whenever n 〉-1/2+a+1/2√1+12a+12a^2.