研究了平面Bessel型光晶格(BL)中双组分玻色-爱因斯坦凝聚(BECs)体系的基态解.从描述三维(3D)BECs体系的动力学方程Gross-Pitaevskii方程(GPE)出发,当垂直方向囚禁频率远大于平面上囚禁频率时,得到了描述2D-BECs体系的动力学方程.利用双组分BECs体系中原子之间相互作用与BL强度相互平衡的条件,得到了平面BL光晶格中2D-GPE的一组基态精确解,给出了基态的原子数分布,总原子数和能量与原子之间相互作用强度及BL势的关系.相对于单组分BEC体系,由于不同组分原子相互作用的存在,使得BL光晶格中双组分BECs基态具有更丰富的结构.当不存在不同组分原子之间的相互作用时,模型简化到单组分体系,并给出了相应的基态解,原子数分布和能量.
The ground state solutions of two-component Bose-Einstein condensates (BECs) in Bessel optical lattices (BLs) are studied by means of the balance condition between BI~ strength and inter-atomic interactions. We consider a quasi-two-dimensional (2D) BECs system, strongly confined in longitudinal direction and weakly trapped in the radial direction in the transverse plane, which obeys 2D Gross-Pitaevskii equation (GPE) derived from its 3D counterpart. Analytically we obtained the atom number distribution, atom number and energy of ground state and give the parameter ranges. Compared to single-component BEC, two- component BECs exhibit a rich variety of ground state structures. These structures depend upon various parameters, in particular the inter-atomic interactions and the BLs strength. Neglecting the inter-component atomic interaction, the corresponding results of single-component situation are given.