We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.
We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.