位置:成果数据库 > 期刊 > 期刊详情页
基于最优二叉树支持向量机的蜜柚叶部病害识别
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2014.10.8
  • 页码:222-231
  • 分类:S431[农业科学—农业昆虫与害虫防治;农业科学—植物保护]
  • 作者机构:[1]中国农业科学院农业信息研究所,北京100081, [2]农业部农业信息服务技术重点实验室,北京100081
  • 相关基金:“十二五”国家科技支撑计划(2012BAF120804);国家自然基金项目(41201599);公益性科研院所基本科研业务费专项资金(2014-J-012,2014-J-011)
  • 相关项目:中国粮食生产消费协调度测定模型构建及实证研究
中文摘要:

为了提高蜜柚叶部中晚期病害的识别准确率,确保蜜柚叶部病害对症施药与病害防治的效果,该文提出了一种基于最优二叉树支持向量机(support vector machine,SVM)的蜜柚叶部病害识别方法,该方法首先将蜜柚叶部病害图像转换为B分量、2G-R-B分量、(G+R+B)/3分量以及YIQ颜色模型中的Q分量的4个灰度图像,再利用5尺度8方向的Gabor小波分别与4个分量灰度图像进行卷积运算,获得5个尺度下不同方向的幅值均值作为病害的特征向量,并结合提出的最优二叉树支持向量机病害识别模型,对黄斑病、炭疽病、疮痂病、煤烟病等4种蜜柚叶部病害进行分类识别。通过交叉验证的方法进行分类识别测试,结果表明:黄斑病、炭疽病、疮痂病、煤烟病识别准确率分别为90%、96.66%、93.33%、96.66%,平均识别率达到94.16%,并将该方法与BP神经网络、一对一SVM与一对多SVM进行比较,试验结果表明该方法可有效识别4种蜜柚叶部病害,在训练时间和识别精度上都优于其他3种方法。该方法可为蜜柚病害准确识别与防治提供有效的技术支持。

英文摘要:

Honey pomelo, one of the most important fruits in China, always suffers a variety of diseases during the whole process of planting, such as maculopathy, anthracnose, scab and dark mildew, which seriously affects the fruit quality and yield. The accurate recognition of honey pomelo leaf diseases is the premise of the treatment of honey pomelo diseases, and the precision directly affects the efficiency in controlling diseases. However, most of the current researches on disease recognition aimed at the global information of the study objects, but ignored the disease’s local feature extraction in multi-scale and multi-direction; in addition, the present researches generally used the method of“one to one”or“one to many”when building many types of support vector machine (SVM) in the disease classification model, few researches used the method about SVM based on directed acyclic decision tree. So, leaf diseases recognition of honey pomelo based on SVM of directed acyclic decision tree was put forward in this paper. At first, statistical analysis on components of color characteristics of collected honey pomelo leaf diseases was carried on, and the conclusion was drawn according to the statistics of component B, component 2G-R-B, component (G+R+B)/3 and component Q in YIQ color model, which were easily distinguished among the 4 diseases, and so the 4 color components were used as disease color features. Secondly, honey pomelo leaf disease images were converted into 4 grayscale images of component B, component 2G-R-B, component (G+R+B)/3 and component Q in YIQ color model. Gabor wavelet with 5 dimensions and 8 directions was used for convolution calculation with 4 grayscale component images, and 16-dimension energy sub-band was got, the mean value of which was used as eigenvector. Disease recognition model of three-level directed acyclic decision tree SVM was constructed by 6 SVM classifiers, in order to recognize 4 honey pomelo diseases, i.e. maculopathy, anthracnose, scab and dark mildew. Ac

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231