位置:成果数据库 > 期刊 > 期刊详情页
基于自适应粒子群算法和数据场的图像二维阈值分割
  • ISSN号:1003-9775
  • 期刊名称:计算机辅助设计与图形学学报
  • 时间:2012.5.5
  • 页码:628-635
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学软件工程国家重点实验室,武汉430072
  • 相关基金:国家自然科学基金(61070009)
  • 相关项目:演化算法的动力学模型与相变研究
作者: 李娜|李元香|
中文摘要:

针对图像分割中最优阈值选择的问题,将粒子群优化算法和数据场理论相结合,提出一种图像二维阈值分割算法.首先把数据场的理论引入到图像处理中,将图像的灰度值空间映射到数据场的势空间;然后通过自适应的粒子群优化算法寻找数据场中最大势值,该势值对应最优阈值;最后根据找到的阈值进行图像分割.在进行空间映射的过程中,将二维直方图中的序偶?p,q?视作数据对象,其中p代表像素的灰度值,q代表邻域的灰度值,选用拟核力场高斯势函数计算各数据对象之间的相互作用,生成了二维直方图的三维数据场.文中亦对数据场的各个参数进行了详尽的探讨.实验结果表明,文中算法不仅合理、有效,而且大大降低了计算的复杂性,能够适应大多数图像的分割.

英文摘要:

A novel method of image segmentation based on adaptive particle swarm optimization and data field has been proposed for optimal threshold selection in image segmentation.In the proposed method,images are mapped from the grayscale space to the potential space of the data field.By taking the frequency of two-dimension gray histogram as the mass of data field,the interactions between elements in the two-dimension histogram can be calculated,a three-dimension data field is generated subsequently.Thus,by employing adaptive particle swarm optimization,the optimal threshold,which is the point with the maximum potential value,can be found and good segmentation results can be obtained.The relevant experiments have shown that the proposed method is effective and greatly reduces the complexity of computation.

同期刊论文项目
期刊论文 35 会议论文 8 专利 5
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752