位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机的脂肪族化合物急性毒性的QSAR研究
  • ISSN号:1009-6094
  • 期刊名称:安全与环境学报
  • 时间:0
  • 页码:19-24
  • 分类:X131[环境科学与工程—环境科学]
  • 作者机构:[1]江苏省城市与工业安全重点实验室,南京工业大学城市建设与安全工程学院,南京210009
  • 相关基金:高等学校博士学科点专项科研基金项目(200802910007),国家自然科学基金项目(20976081)
  • 相关项目:有机物定量结构-燃爆特性相关性及预测摸型研究
中文摘要:

基于定量结构-活性相关性(QSAR)原理,研究了106种脂肪族化合物结构与其急性毒性LC50(半数致死浓度)之间的内在定量关系。应用遗传算法从大量结构参数中优化筛选出与LC50最为密切相关的4个参数作为分子描述符,分别采用支持向量机(SVM)方法和多元线性回归(MLR)方法建立了相应的QSAR预测模型。分别采用内部验证及外部验证的方式对所建模型性能进行了验证。研究表明。2种模型均具有较高的稳定性、预测能力及泛化性能。其中支持向量机模型对训练集和预测集样本的预测平均绝对误差分别为0.336和0.364,优于多元线性回归方法所得结果。

英文摘要:

This paper is concerned about its study on the quantitative relationship between the acute toxicity (LC50) and the molecular structure of 106 alipbatic compounds based on the quantitative structure-activity relationship (QSAR) model. The so-called QSAR model is by nature a newly developed method for predicting the properties of ehemo informaties based on the basic theory of chemistry that molecular properties are determined by the molecular structures and the intrinsic quantitative relation between molecular structures and the properties of the organic compounds. Aliphatic compounds, as is known, are various with a great deal of uses in our daily life. However, a considerable part of the aliphatic compounds hasn' t yet been tested for their toxicity. For this purpose, we began to relate the properties under question to the structural parameters in hope to develop a corresponding quantitative model, believing that QSAR can be used to predict such properties of organic compounds from their molecular structures alone. In this paper, we have chosen 4 descriptors which may contribute greatly to the LC50 with a variable selection method of genetic algorithm (GA). At the same time, we have also used both the multi-linear regression (MLR) and the new chemo-informatic method in supporting the vector machine (SVM) to Simulate the likely quantitative retation lying between the above said selected descriptors and LC50. Then, we began to test the proposed models with their internal and external validations thoroughly checked. The results of our study prove the robustness and highly predictive ability as well as the de-ductive power of our generalization. The mean absolute error for the training set and prediction set of SVM model turn out to be 0. 336 and 0. 364, the results of the MLR model have thus been proved credible. Therefore, it can be concluded that our model for testing the quantitative relationship between the acute toxicity and molecular structures of aliphatic compounds is true to the testin

同期刊论文项目
同项目期刊论文
期刊信息
  • 《安全与环境学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器工业集团公司
  • 主办单位:北京理工大学 中国环境科学学会 中国职业安全健康协会
  • 主编:冯长根
  • 地址:北京市海淀区中关村南大街5号
  • 邮编:100081
  • 邮箱:aqyhjxb@263.net;aqyhjxb@wuma.com.cn
  • 电话:010-68913997
  • 国际标准刊号:ISSN:1009-6094
  • 国内统一刊号:ISSN:11-4537/X
  • 邮发代号:2-770
  • 获奖情况:
  • 获首届《CAJ-CD》执行优秀期刊奖,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:17182