分岔是一种常见的非线性现象。提出了一种追踪雅可比矩阵关键特征值的连续性算法,该方法首先利用特征值实部、特征值关于分岔参数的一阶和二阶灵敏度系数,构造一个判断关键特征值的指标,然后利用该指标来确定某几个特征值为待选的关键特征值,最后利用连续性方法对关键特征值进行连续追踪,直至霍普夫(Hopf)分岔点。
A continuous method to trace the key eigenvalue of Jaeobian matrix is presented. Firstly, a index is found based on the the first and second sensitivity of eigenvalue real-part to bifurcation-parameter. Then, a few eigenvalues are chosen as candidates by the application of the index. At last the continuous method is used to trace the key eigenvalue until the Hopf bifurcation is appear.