将地基土-地铁车站结构体系视为平面应变问题,采用Davidenkov动力本构模型和动塑性损伤模型,分别模拟土体和车站结构混凝土的动力特性,研究了中远场地震动和近断层地震动作用下地铁车站结构的能量反应特征.结果表明,地铁车站结构的阻尼耗能和滞回耗能随地震动作用时间单调增加,输入地震动特性对地铁车站结构的能量反应特征有显著影响;中柱的滞回耗能分布沿结构层间自下向上依次减少;侧墙的滞回耗能主要分布在顶层和底层;梁板的滞回耗能分布较为均匀,但顶板的耗能相对较多;中柱的滞回能量耗散最为集中,在地铁车站结构的抗震设计中应加强中柱的抗震措施.
Considering the influence of soil-station structure on the 2D finite element analysis, the nonlinear dynamic interaction of soil-station structure is modeled, where a dynamic Davidenkov model is used to model dynamic characteristics of soils and a plastic-damage model is used to model dynamic characteristics of station structure concrete. The energy response of the station structure is analyzed under middle-far field ground motion and near-fault ground motion. Results show that damping energy and hysteretic energy monotone increase under ground motion, and the ground motion characteristics impact on the energy response of the station structure. The hysteretic energy of columns successively decreases from the bottom to the top, the hysteretie energy of sidewalls is mainly distributed in the bottom and the top. The distribution of hysteretic energy of beam slabs is relatively even, and the hysteretic energy of roof is relatively more. Furthermore, concentration effect of hysteretic energy of the structure is measured by hysteretie energy density. It is found that the hysteretie energy is the most centralized in the column. A seismic measurement of the columns must be promoted in the seismic design of subway station structure.