研究了一个具有脉冲出生的Leslie-Gower捕食者一食饵系统的动力学性质.利用频闪映射。得到了带有Ricker和Beverton-Holt函数的脉冲系统准确的周期解.通过Floquet定理和脉冲比较定理,讨论了该系统的灭绝和持久生存.最后,数值分析了以b(p)为分支参数的分支图,得到的结论是脉冲出生会带给系统倍周期分支、混沌以及在混沌带中出现周期窗口等复杂的动力学行为.
A Leslie-Gower predator-prey model with birth pulse is investigated: By the stroboscopic map, we obtain an exact periodic solution of the system which has Ricker function or Beverton-Holt function. Further, by Floquet theorem and comparison theorem, we discuss the extinction and permanence of the system. Finally, by numerically analyzing the bifilrcation diagrams with bifurcation parameter b (or p ), we know birth pulse brings the system complexly dynamic behaviors including period-doubling route, chaos and periodic windows within the chaotic region.