位置:成果数据库 > 期刊 > 期刊详情页
基于模糊C-均值的改进人工蜂群聚类算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:解放军信息工程大学密码工程学院,郑州450001
  • 相关基金:国家自然科学基金资助项目(61303074,61309013); 河南省科技攻关计划资助项目(12210231003,13210231002)
中文摘要:

传统的模糊C-均值聚类算法存在对初始聚类中心选择与噪声数据敏感,容易使目标函数陷入局部最优的问题,以及标准人工蜂群算法局部搜索能力及开发能力不强的缺点。针对这些问题,引进差分进化的思想改进人工蜂群算法并对跟随蜂的搜索行为进行更准确的描述,结合模糊C-均值聚类算法具有收敛速度快、易于实现且局部搜索能力较强的优点,提出一种基于模糊C-均值的改进人工蜂群聚类算法以提高聚类的性能。实验结果表明,该算法相对于传统FCM聚类算法,其准确率和抗噪性有所提高,聚类效果更好。

英文摘要:

Due to the issues of traditional fuzzy C-means( FCM) clustering algorithm,which is sensitive to the initial selection of the center and noise data,and easy to make an objective function into local optimum,and the disadvantages of weak local search ability and development capability in standard artificial bee colony algorithm,this paper modified artificial bee colony algorithm inspired by the thought of differential evolution and made a more accurate description of searching behavior of onlooker bees. Fuzzy C-means clustering algorithm has advantages of fast converges,the ability of local search and is easy to implement. Combination of them can improve the performance of clustering. The experiment shows that compared with traditional FCM algorithm,the algorithm further improves the accuracy and noise immunity and has better clustering results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049