位置:成果数据库 > 期刊 > 期刊详情页
CSFW-SC: Cuckoo Search Fuzzy-Weighting Algorithm for Subspace Clustering Applying to High-Dimensional Clustering
  • ISSN号:1673-5447
  • 期刊名称:《中国通信:英文版》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:Zhengzhou Institute of Information Science and Technology
  • 相关基金:supported in part by the National Natural Science Foundation of China (Nos. 61303074, 61309013);the Programs for Science, National Key Basic Research and Development Program (“973”) of China (No. 2012CB315900);Technology Development of Henan province (Nos.12210231003, 13210231002)
中文摘要:

Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subspace clustering algorithm. In the proposed algorithm, a novel objective function is firstly designed by considering the fuzzy weighting within-cluster compactness and the between-cluster separation, and loosening the constraints of dimension weight matrix. Then gradual membership and improved Cuckoo search, a global search strategy, are introduced to optimize the objective function and search subspace clusters, giving novel learning rules for clustering. At last, the performance of the proposed algorithm on the clustering analysis of various low and high dimensional datasets is experimentally compared with that of several competitive subspace clustering algorithms. Experimental studies demonstrate that the proposed algorithm can obtain better performance than most of the existing soft subspace clustering algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国通信:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:刘复利
  • 地址:北京市东城区广渠门内大街80号6层608
  • 邮编:100062
  • 邮箱:editor@ezcom.cn
  • 电话:010-64553845
  • 国际标准刊号:ISSN:1673-5447
  • 国内统一刊号:ISSN:11-5439/TN
  • 邮发代号:2-539
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:187