位置:成果数据库 > 期刊 > 期刊详情页
基于小波去噪的有向加权社团发现研究
  • ISSN号:1004-9037
  • 期刊名称:《数据采集与处理》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]解放军理工大学气象海洋学院,南京211101, [2]解放军理工大学指挥信息系统学院,南京210007
  • 相关基金:基金项目:国家高技术研究发展(“八六三”计划)(2012AA01A510)资助项目;国家自然科学基金面上(41275002)资助项目.
中文摘要:

目前大部分社团发现方法都是针对无向无权图,但实际的社会媒体中的社团内部个体交互过程可以抽象为一个有向加权图,并且权重中含有大量的噪声.为解决有向加权社团的划分问题,本文提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)可去噪声的社团发现方法.该方法通过小波阈值去噪对社会网络数据进行去噪处理,结合有向加权的非负矩阵分解算法对去噪后的数据集进行社团发现,准确找出社团结构.在社会媒体的实验数据集和标准数据集上的实验结果表明,该算法针对带噪声的有向加权图社团发现问题具有良好划分性能,SNR为15时,在Lesmis数据集上的社团划分准确率达到96%,划分模块度值提高了29%.本文为解决带噪的有向加权的社会网络数据提供了切实有效的处理方法.

英文摘要:

Most community detection methods are aiming at solving undirected and unweighted datasets. However, datasets are often directed and weighted with noise in real world. In order to process noisy and directed weighted community detection, a method based on nonnegative matrix factorization (NMF) is proposed. In the algorithm, wavelet threshold denoising is used to denoise the social network datasets. And the community structure is abtained by community detection through NMF. Simulations show the proposed method is more effective,i, e. fol esmis dataset when SNR is 15, the accuracy of dividing community is 96% and the modularity of the method is improved by 29 % The proposed method is more applicable than other community detection methods for directed weighted datasets with noise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数据采集与处理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会 仪器仪表学会 信号处理学会 中国一汽仪表学会 中国物理学会 微弱信号检测学会 南京航空航天大学
  • 主编:贲德
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:sjcj@nuaa.edu.cn
  • 电话:025-84892742
  • 国际标准刊号:ISSN:1004-9037
  • 国内统一刊号:ISSN:32-1367/TN
  • 邮发代号:28-235
  • 获奖情况:
  • 中国科技论文统计源用刊,2007年被评为江苏省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8148