位置:成果数据库 > 期刊 > 期刊详情页
一种组合核函数的自适应目标跟踪算法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:四川大学计算机学院,成都610065
  • 相关基金:国家自然科技基金(61471250,81373239)
中文摘要:

分析了传统Mean Shift跟踪算法在外观模型对光照变化敏感以及外观模型更新上容易积累误差等缺点,结合了传统Mean Shift 跟踪算法计算速度快和易于组合的优点,设计了两种不同外观建模的Mean Shift跟踪算法。第一种Mean Shift跟踪算法采用传统的RGB颜色模型提取外观模型,第二种采用对光照变化不敏感的非色彩与梯度信息提取外观模型。结合这两种跟踪算法,通过这两种跟踪算法跟踪的目标进行加权得到的目标位置,以及根据协同更新的原理对这两种跟踪器的外观模板进行更新。这样不仅使得跟踪准确率得到了一定的提高,而且对外观变化的适应能力也大大的提高。

英文摘要:

Analyzed the traditional Mean Shift tracking algorithm in appearance model is sensitive to illumination changes and the disadvantages such as easily accumulated error on appearance model updating, combines the traditional Mean Shift tracking algorithm calculation speed is fast and easy to combination, the advantages of the design of the two different appearance modeling Mean Shift tracking algorithm. The first kind of Mean Shift tracking algorithm using traditional RGB color model to extract the appearance model, the second is not sensitive to illumination change of color and gradient information extraction model appearance. Combining these two tracking algorithm, through the two track of target tracking algorithm weighted target location, and the principle of based on the update of the cooperation of the two kinds of the appearance of the tracker template updates. This not only makes the tracking accuracy has been improved, and the ability to adapt to change the appearance is greatly improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542