位置:成果数据库 > 期刊 > 期刊详情页
基于表面EMG功率谱和BP网络的多运动模式识别
  • ISSN号:1671-4512
  • 期刊名称:《华中科技大学学报:自然科学版》
  • 时间:0
  • 分类:O235[理学—运筹学与控制论;理学—数学] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]杭州电子科技大学机器人研究所,浙江杭州310018
  • 相关基金:国家自然科学基金资助项目(60474054);教育部新世纪优秀人才支持项目(NCET-04-0558).
中文摘要:

结合功率谱比值法和BP神经网络提出一种基于表面肌电信号(EMG)的多运动模式识别算法.该算法首先根据表面肌电信号功率谱的特点,提出一种有效的特征提取算法——功率谱比值法;然后将功率谱比值特征作为BP神经网络的输入向量,实现对伸腕、屈腕、张开、合拢四种动作模式的识别,该识别结果可为肌电假手的多种运动模式提供仿生控制的信号源.实验结果表明,该方法对同一健康受试者四种运动模式的识别成功率平均达到95%,而对不同的健康受试者的识别成功率平均达到85%.

英文摘要:

An algorithm based on surface EMG signals was proposed by the combination of power spectral coefficient with BP neural networks (BPNN), to implement multi-pattern recognition of surface electromyography (SEMG). An effective method of feature extraction, power spectral coefficient method, was introduced. Then, it took the obtained characteristics (namely, the computed power spectral coefficients) as the inputs of BPNN to discriminate four motion patterns, palmrs dorsiflexion, flexion, opening and closing. The recognition results could be used as source signals to control powered prostheses. The experimental results indicate that, for the same healthy testee, the success rate can reach 95% averagely by using the above algorithm to implement four motion-pattern discrimination, while, for different healthy testees, it can reach 85 % averagely.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华中科技大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:丁烈云
  • 地址:武汉珞喻路1037号
  • 邮编:430074
  • 邮箱:hgxbs@mail.hust.edu.cn
  • 电话:027-87543916 87544294
  • 国际标准刊号:ISSN:1671-4512
  • 国内统一刊号:ISSN:42-1658/N
  • 邮发代号:38-9
  • 获奖情况:
  • 全国优秀科技期刊,首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21013