针对水平集分割模型运算效率较低且易出现过分割的现象,结合视频中运动目标分割的应用背景,该文提出一种将运动目标检测作为先验形状约束和曲线局部演化方法相结合的二值水平集分割模型。该模型提出将运动目标检测的区域作为先验形状信息对水平集分割进行约束,并使用二值函数替换传统水平集函数提高运算效率,同时融入曲线的局部演化方法解决二值水平集模型缺乏曲线演化渐进性的问题。实验结果表明,该文方法在分割准确性、鲁棒性和运算效率等方面与相关模型相比均有不同程度的提高。
In order to solve over-segmentation issue and improve computing efficiency,this paper proposes a moving object segmentation model using binary level set based on shape constraint and local curve evolution.Firstly,the model introduces priori shape information in the traditional level set model to constrain segmentation,and the shape is obtained by object detection.Then,to improve efficiency the proposed model uses a binary level set function to replace the traditional level set function.Furthermore,the paper proposes a method of local curve evolution to address the lack of gradual progress in binary level set curve evolution.Finally,the experimental results show that an obvious performance improvement on segmentation could be obtained through the algorithm.