The fault diagnosis and accommodation strategy for a class of linear parameter-varying (LPV) systems were investigated. A fast adaptive fault estimation (FAFE) algorithm for LPV systems module, based on an adaptive observer, proposed to enhance the performance of fault estimation including rapidity and accuracy. Then, the obtained fault estimate was used to construct the fault tolerant control (FTC) law. The design method was formulated as a convex linear matrix inequalities (LMIs) optimization problem. Once the faults are estimated, the fault tolerant controller is implemented as a dynamic output feedback controller. This controller can compensate for the effect of the faults by stabilizing the closed-loop systems. Finally, a helicopter model in a vertical flight with actuator fault was used to the effectiveness of the proposed approach.