共形空间Q1^n有Lorentz群的作用,首先证明了Lorentz空间R1^n中的稳态曲面是关于共形体积泛函的临界曲面,其次对共形空间Q1^n中的共形迷向子流形作出了分类.
There is a Lorenzian group acting on the conformal space Q1^n.First this paper shows that any stationary space-like surface in R1^n is a critical value with respect to the functional.Then the conformal isotropic submanifolds in Q1^n is classified.