对于完全图平均曲率流δF/δt=H,F(.,0)=F0,前人已做过深入的研究,在前人的基础上将该完全图平均曲率流推广,主要研究完全图平均曲率流δF/ δt=g(t)H,F(.,0)=F0,其中g(t)为[0,∞)上的单调增函数,g(t)≥1,且g(t)在[0,∞)上一致有界.换句话说,完全图平均曲率流δF/δt=H,F(,.0)=F0只是完全图平均曲率流δF/δt=g(t)H,F(.,0)=F0里面“g(t)≡1”特殊情况.
Some mathematians have studied the mean curvature evolution of entire graph δF/δt= H, F(..0) =F0, in this article, we main studied its extending form δF/δt= H, F(. ,0) =F0, while g(t) is a function on [0, ∞), g(t) ≥1, and g(t) is bounded , For another saying, the mean curvature evolution of entire graph δF/δt=H,F(. ,0) =F0 is the special case "g(t)≡1"in mean curvature evolution of entire graph δF/δt = g(t) H, F(. ,0) = Fo.