Numerical simulation of enhanced fluid flow characteristics in a three-stage double-stirring extraction tank was conducted with the coupling of an Eulerian multiphase flow model and a Morsi-Alexander interphase drag force model. Results show that the addition of a stirring device into the settler can efficiently reduce the volume fraction of out-of-phase impurity in the outlet, and accelerate the settling separation of oil-water mixture. Such addition can also effectively break down the oil-water-wrapped liquid droplets coming from the mixer, inhibit reflux from the outlet, and improve the oil-water separation. The addition of a stirring device induces ignorable power consumption compared with that by the mixer, and can thus facilitate the commercialized promotion of this novel equipment.
Numerical simulation of enhanced fluid flow characteristics in a three-stage double-stirring extraction tank was conducted with the coupling of an Eulerian multiphase flow model and a Morsi-Alexander interphase drag force model. Results show that the addition of a stirring device into the settler can efficiently reduce the volume fraction of out-of-phase impurity in the outlet, and accelerate the settling separation of oil-water mixture. Such addition can also effectively break down the oil-water-wrapped liquid droplets coming from the mixer, inhibit reflux from the outlet, and improve the oil-water separation. The addition of a stirring device induces ignorable power consumption compared with that by the mixer, and can thus facilitate the commercialized promotion of this novel equipment.