采用液相还原法制备了石墨烯水/气凝胶三维石墨烯宏观材料,并将其作为电极应用于电容去离子中,以氯化钠作为研究对象,研究三维石墨烯凝胶电极在电容去离子中的性能.利用扫描电子显微镜、循环伏安曲线和X射线光电子能谱等多种手段考察了电极的形貌结构及特性.对比了石墨烯水凝胶与气凝胶电极应用于去离子电容中的性能差异.结果表明,水凝胶电极相对于气凝胶电极具有较好的去离子性能;采用压片法进一步对石墨烯水凝胶电极材料进行优化,结果表明,压片水凝胶、水凝胶和气凝胶3种电极材料在去离子电容中均具有较好的电容去离子效果,其电吸附容量从大到小的顺序:压片水凝胶〉水凝胶〉气凝胶.石墨烯水凝胶作为电极材料在电容去离子中具有较好的应用前景.
In this paper, three-dimensional (3D) graphene hydrogel/aerogel were synthesized by wet chemistry methods, and then used as electrode materials in capacitive deionization (CDI) to separate NaC1 from aqueous solution. Besides, the structure and character of the electrodes were analyzed by scanning electron microscopy, cyclic vohammetry, X-ray photoelectron spectroscopy and other methods. The results show that 3D graphene hydrogel has larger adsorption capacity than graphene aerogel. Then the graphene hydrogel electrode was optimized by pressing graphene hydrogel (pressing hydrogel). 3D graphene electrodes achieve good results in capacitive deionization. And the adsorption capacity ranking from big to small is pressing hydrogel, graphene hydrogel, graphene aerogel.