针对目前室内空气污染物甲醛超标的现象,将新型碳纳米材料(石墨烯、碳纳米管)引入到气体污染物去除领域.利用石墨烯水溶液在一定条件下形成凝胶的特性,采用海绵作为骨架,构造石墨烯/碳纳米管/海绵三维气凝胶结构,并进一步采用氨基修饰提高该氨基化碳纳米管/石墨烯气凝胶(GCNTs/EDA-S)对室内空气污染物甲醛的吸附性能,研究石墨烯与碳纳米管(CNTs)对气态甲醛吸附作用机理.样品吸附实验结果对比分析表明,石墨烯和碳纳米管氨基官能团修饰后对气态甲醛均有良好的吸附性能,其中GCNTs/EDA-S在甲醛浓度为3.7ppm时,吸附实验的穿透时间可达到4024min/g,最大吸附容量为13.5mg/g.
For the excessive phenomenon of indoor air pollutant formaldehyde, the new carbon nanomaterials(graphene, carbon nanotubes) were introduced into the field of gaseous pollutants removal. Using the characteristic of graphene solution that forming gel under certain conditions and adopts sponges as skeleton, construct the three-dimensional structure of aerogels of graphene/carbon nanotubes/sponge. Further improve the performance of formaldehyde removal of the carbon nanotube/graphene aerogel(GCNTs/EDA-S) by modified with amino groups and study the adsorption mechanism. The results of experiment show that both of graphene and carbon nanotubes have good adsorption properties after modified with amino functional groups. The breakthrough time of GCNTs/EDA-S can be up to 4024min/g and the maximum adsorption capacity is 13.5mg/g under the formaldehyde concentration of 3.7PPM.