位置:成果数据库 > 期刊 > 期刊详情页
基于多重解析字典学习和观测矩阵优化的压缩感知
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
  • 相关基金:国家自然科学基金(61071200,61471313); 河北省自然科学基金(F2014203076)资助.
中文摘要:

文中提出了一种基于子空间解析字典学习和观测矩阵优化的图像压缩感知算法.该算法根据图像的局部方向特征,将整个图像空间分成多个子空间,并且采用几何共轭梯度算法分别在各个子空间学习解析字典,以实现对不同子空间图像块的最优稀疏表示.在图像重构过程中,首先在所有的子空间对每个图像块分别进行估计,然后根据稀疏表示最小误差准则获得每个图像块的最优估计.为了进一步提高图像重构质量,文中通过对不同子空间的图像块进行线性判别分析获得优化观测矩阵.实验表明文中算法可以实现高质量的压缩感知图像重构.

英文摘要:

A novel compressed sensing algorithm based on learning analysis dictionary and optimizing measurement matrix from subspaces is proposed in this paper. The whole image space is divided into multiple subspaces based on the local directional features in our algorithm to achieve the optimal sparse representation for the image patches of different subspaces. The analysis dictionaries are learned in each subspace respectively by the geometric conjugate gradient method. In the image reconstruction process, each image patch is estimated in every subspace respectively, and the optimal estimation of each image patch is selected based on the least sparse representation error criterion. Aiming to further improve the quality of the reconstructed image, the measurement matrix is optimized by linear discriminant analysis on the image patch subspaces. Experiments show that the proposed algorithm can achieve high quality image reconstruction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433