收益 viscoplastic 液体流动的数字答案被对 Herschel-Bulkley 模型固有的奇特妨碍。在适合边界的直角的坐标系统上的一个有限差别方法被利用数字地通过同心、怪癖的 annuli 调查非牛顿的收益 viscoplastic 液体的充分发达的稳定的流动。液体流变学与 Herschel-Bulkley 模型一起被描述。基于 Herschel-Bulkley 的一条连续 viscoplastic 途径,模型在火山灰成胶状黏土暂停的容量的流动率上与试验性的数据在差的一致被发现的数字模拟。为 Herschel-Bulkley 液体流动的一个严格的数学模型被建立,相应数字过程被建议。然而,仅仅在一个同心体环的 Herschel-Bulkley 液体的流动的案例被使用普通优化技术基于假定流动结构解决。在一个怪癖的体环的可能的流动结构在 Herschel-Bulkley 液体流动的数字模拟被想,并且推进挑战被建议。
Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized to investigate numerically the fully developed steady flow of non-Newtonian yield viscoplastic fluid through concentric and eccentric annuli. The fluid rheology is described with the Herschel-Bulkley model. The numerical simulation based on a continuous viscoplastic approach to the Herschel-Bulkley model is found in poor accordance with the experimental data on volumetric flow rate of a bentonite suspension. A strict mathematical model for Herschel-Bulkley fluid flow is established and the corresponding numerical procedures are proposed. However, only the case of flow of a Herschel-Bulkley fluid in a concentric annulus is resolved based on the presumed flow stnicture by using the common optimization technique. Possible flow structures in an eccentric afinulus are presumed, and further challenges in numerical simulation of the Herschel-Bulkley fluid flow are suggested.